
Recursive inventory management

Martin F. Krafft
madduck@debian.org

13 Aug 2013 @ DebConf 13, Vaumarcus, Switzerland

madduck@debian.org

Configuration management
(system administration)

Configuration management

CFEngine bcfg2 Puppet

Chef Salt Ansible

Configuration management

CFEngine bcfg2 Puppet

Chef Salt Ansible

Two approaches

Cloud provisioning
System administration
(classical)

Configuring the cloud

Unprecedented ease!
Scalability

”
Orchestration“

Ad-hoc provisioning
Homogeneous

Classical system administration

Longevity
Heterogeneous
Themed hostnames, not canonical names
and numbers
Laziness (vs. unprecedented ease)
Orchestration

Classical system administration

Longevity

Heterogeneous
Themed hostnames, not canonical names
and numbers
Laziness (vs. unprecedented ease)
Orchestration

Classical system administration

Longevity
Heterogeneous

Themed hostnames, not canonical names
and numbers
Laziness (vs. unprecedented ease)
Orchestration

Classical system administration

Longevity
Heterogeneous
Themed hostnames, not canonical names
and numbers

Laziness (vs. unprecedented ease)
Orchestration

Classical system administration

Longevity
Heterogeneous
Themed hostnames, not canonical names
and numbers
Laziness (vs. unprecedented ease)

Orchestration

Classical system administration

Longevity
Heterogeneous
Themed hostnames, not canonical names
and numbers
Laziness (vs. unprecedented ease)
Orchestration

Configuration management with reclass

reclass comes from classical system
administration

It might well suit your cloud needs

(might require rethinking)

Configuration management with reclass

reclass comes from classical system
administration
It might well suit your cloud needs

(might require rethinking)

Configuration management with reclass

reclass comes from classical system
administration
It might well suit your cloud needs
(might require rethinking)

Targeting nodes
vs.

classifying hosts

Targeting nodes

Mailservers

Targeting nodes

Mailservers

Rack somewhere

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Debian

has debian fact

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Debian

has debian fact

hosted @ Zurich

*.zurich.corp

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Debian

has debian fact

hosted @ Zurich

*.zurich.corpBackwards!

To what classes does a specific node
belong?
Behaviour is partially reactive,
may depend on data on host

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Debian

has debian fact

hosted @ Zurich

*.zurich.corpBackwards!
To what classes does a specific node
belong?

Behaviour is partially reactive,
may depend on data on host

Targeting nodes

Mailservers

Rack somewhere

192.0.2.64/28

Debian

has debian fact

hosted @ Zurich

*.zurich.corpBackwards!
To what classes does a specific node
belong?
Behaviour is partially reactive,
may depend on data on host

Classifying hosts

blue.example.org

Classifying hosts

blue.example.org

mailserver

ntpclient

hosted@zurich

Classifying hosts

blue.example.org

mailserver

ntpclient

hosted@zurich

server = ’0.pool.ntp.org’

Classifying hosts

blue.example.org

mailserver

ntpclient

hosted@zurich

server = ’0.pool.ntp.org’

server = ’0.ch.pool.ntp.org’

Classifying hosts

white.example.org

Classifying hosts

white.example.org

webserver

ntpclient

hosted@munich

server = ’0.pool.ntp.org’

Classifying hosts

white.example.org

webserver

ntpclient

hosted@munich

server = ’0.pool.ntp.org’

server = ’0.de.pool.ntp.org’

Puppet

node ’blue.example.org’ {

$ntpserver = ’red.example.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Anger!

No multiple inheritance
Inheritance generally discouraged
(cf. docs)
Parametrisation unnecessarily difficult

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Anger!
No multiple inheritance

Inheritance generally discouraged
(cf. docs)
Parametrisation unnecessarily difficult

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Anger!
No multiple inheritance
Inheritance generally discouraged
(cf. docs)

Parametrisation unnecessarily difficult

Puppet

node ’common’ {

$ntpserver = ’0.pool.ntp.org’

include common

include ntp

}

node ’blue.example.org ’ inherits ’common ’ {

$ntpserver = ’red.example.org’

}

Anger!
No multiple inheritance
Inheritance generally discouraged
(cf. docs)
Parametrisation unnecessarily difficult

System administration automation principles (abridged)

Central control, versioned
Parametrisation
(no special casing in code)
No redundancy
Use node information as parameters,
don’t rely on them for behaviour selection

System administration automation principles (abridged)

Central control, versioned

Parametrisation
(no special casing in code)
No redundancy
Use node information as parameters,
don’t rely on them for behaviour selection

System administration automation principles (abridged)

Central control, versioned
Parametrisation
(no special casing in code)

No redundancy
Use node information as parameters,
don’t rely on them for behaviour selection

System administration automation principles (abridged)

Central control, versioned
Parametrisation
(no special casing in code)
No redundancy

Use node information as parameters,
don’t rely on them for behaviour selection

System administration automation principles (abridged)

Central control, versioned
Parametrisation
(no special casing in code)
No redundancy
Use node information as parameters,
don’t rely on them for behaviour selection

recursive
external
(node)

classifier

Data use by the CMS

What applications should a role have?
(aka. modules, states, playbooks)

How does this node differ from all other nodes
that have the same application?
(aka. parameters, pillar, variables)

Which nodes belong to a group?
(aka. nodegroups, clusters)

Data use by the CMS

What applications should a role have?
(aka. modules, states, playbooks)

How does this node differ from all other nodes
that have the same application?
(aka. parameters, pillar, variables)

Which nodes belong to a group?
(aka. nodegroups, clusters)

Data use by the CMS

What applications should a role have?
(aka. modules, states, playbooks)

How does this node differ from all other nodes
that have the same application?
(aka. parameters, pillar, variables)

Which nodes belong to a group?
(aka. nodegroups, clusters)

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Usage by the system administrator

Deploy and manage site-wide configuration
changes

Upgrade all nodes tagged debian@stable

Update /etc/motd on all hosts hosted@zurich

Fetch logs of all hosts tagged mailserver

reclass just assembles/provides the data

Configuration management
vs.

remote execution
?

Configuration management
&

remote execution
!

Single data source

reclass adapters

Adapters interface between configuration
management system and reclass

:
Mode of invocation (module,
command-line switches, etc.)
Output (YAML, JSON, . . .)

Adapters provided:

Puppet (not yet re-implemented)
Salt (module)
Ansible (exec required)

reclass adapters

Adapters interface between configuration
management system and reclass:

Mode of invocation (module,
command-line switches, etc.)

Output (YAML, JSON, . . .)
Adapters provided:

Puppet (not yet re-implemented)
Salt (module)
Ansible (exec required)

reclass adapters

Adapters interface between configuration
management system and reclass:

Mode of invocation (module,
command-line switches, etc.)
Output (YAML, JSON, . . .)

Adapters provided:

Puppet (not yet re-implemented)
Salt (module)
Ansible (exec required)

reclass adapters

Adapters interface between configuration
management system and reclass:

Mode of invocation (module,
command-line switches, etc.)
Output (YAML, JSON, . . .)

Adapters provided:
Puppet (not yet re-implemented)

Salt (module)
Ansible (exec required)

reclass adapters

Adapters interface between configuration
management system and reclass:

Mode of invocation (module,
command-line switches, etc.)
Output (YAML, JSON, . . .)

Adapters provided:
Puppet (not yet re-implemented)
Salt (module)

Ansible (exec required)

reclass adapters

Adapters interface between configuration
management system and reclass:

Mode of invocation (module,
command-line switches, etc.)
Output (YAML, JSON, . . .)

Adapters provided:
Puppet (not yet re-implemented)
Salt (module)
Ansible (exec required)

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Puppet

Original reclass written for Puppet

. . . out of frustration

Rage-quit Puppet two years ago

Rewritten reclass from scratch since then

Could not be bothered to reimplement

Trivially done through adapter plugin

reclass and Salt

Provides top and pillar data

Adapter is a Salt module, since 0.16.0

nodegroups not yet implemented (Salt issue
#5787)

reclass and Salt

Provides top and pillar data

Adapter is a Salt module, since 0.16.0

nodegroups not yet implemented (Salt issue
#5787)

reclass and Salt

Provides top and pillar data

Adapter is a Salt module, since 0.16.0

nodegroups not yet implemented (Salt issue
#5787)

reclass and Ansible

Provides inventory and node information

Implemented as external script

Does not yet support batched calls (recent Ansible
feature)

reclass and Ansible

Provides inventory and node information

Implemented as external script

Does not yet support batched calls (recent Ansible
feature)

reclass and Ansible

Provides inventory and node information

Implemented as external script

Does not yet support batched calls (recent Ansible
feature)

Enough of this boring stuff!

Parametrisation is key

Parametrise modules as much as possible

sensible

At all cost, avoid special-casing in module code

Reclass allows you to keep your parameters
modular

Define your data in one place only (no redundancy)

Parametrisation is key

Parametrise modules as much as sensible

At all cost, avoid special-casing in module code

Reclass allows you to keep your parameters
modular

Define your data in one place only (no redundancy)

Parametrisation is key

Parametrise modules as much as sensible

At all cost, avoid special-casing in module code

Reclass allows you to keep your parameters
modular

Define your data in one place only (no redundancy)

Parametrisation is key

Parametrise modules as much as sensible

At all cost, avoid special-casing in module code

Reclass allows you to keep your parameters
modular

Define your data in one place only (no redundancy)

Parametrisation is key

Parametrise modules as much as sensible

At all cost, avoid special-casing in module code

Reclass allows you to keep your parameters
modular

Define your data in one place only (no redundancy)

reclass node definition

blue.example.org.yaml:

applications:

- postfix

- ntp

parameters:

ntp:

server: 0.pool.ntp.org

reclass node definition

blue.example.org.yaml:

applications:

- postfix

- ntp

parameters:

ntp:

server: 0.pool.ntp.org

But wait!
You promised recursion!

yaml fs

YAML files for nodes in
$inventory base uri/nodes

YAML files defining classes in
$inventory base uri/classes

Nodes and classes files may specify classes to
inherit

You can think of classes as tags, too!

Smart (deep) merging on return from recursive
descent walk

yaml fs

YAML files for nodes in
$inventory base uri/nodes

YAML files defining classes in
$inventory base uri/classes

Nodes and classes files may specify classes to
inherit

You can think of classes as tags, too!

Smart (deep) merging on return from recursive
descent walk

yaml fs

YAML files for nodes in
$inventory base uri/nodes

YAML files defining classes in
$inventory base uri/classes

Nodes and classes files may specify classes to
inherit

You can think of classes as tags, too!

Smart (deep) merging on return from recursive
descent walk

yaml fs

YAML files for nodes in
$inventory base uri/nodes

YAML files defining classes in
$inventory base uri/classes

Nodes and classes files may specify classes to
inherit

You can think of classes as tags, too!

Smart (deep) merging on return from recursive
descent walk

yaml fs

YAML files for nodes in
$inventory base uri/nodes

YAML files defining classes in
$inventory base uri/classes

Nodes and classes files may specify classes to
inherit

You can think of classes as tags, too!

Smart (deep) merging on return from recursive
descent walk

reclass node definition

nodes/blue.example.org.yaml:

classes:

- common

- mailserver

parameters:

ntp:

server: 0.ch.pool.ntp.org

classes/common.yaml:

applications:

- ntp

parameters:

ntp:

server: 0.pool.ntp.org

reclass node definition

nodes/blue.example.org.yaml:

classes:

- common

- mailserver

parameters:

ntp:

server: 0.ch.pool.ntp.org

classes/common.yaml:

applications:

- ntp

parameters:

ntp:

server: 0.pool.ntp.org

reclass node definition

nodes/blue.example.org.yaml:

classes:

- common

- mailserver

parameters:

ntp:

server: 0.ch.pool.ntp.org

classes/common.yaml:

applications:

- ntp

parameters:

ntp:

server: 0.pool.ntp.org

More specific classes
override data defined in

less specific classes

reclass node definition

nodes/blue.example.org.yaml:

classes:

- common

- mailserver

- hosted@zurich

classes/hosted@zurich.yaml:

parameters:

ntp:

server: 0.ch.pool.ntp.org

reclass node definition

nodes/blue.example.org.yaml:

classes:

- common

- mailserver

- hosted@zurich

classes/hosted@zurich.yaml:

parameters:

ntp:

server: 0.ch.pool.ntp.org

Multiple inheritance
well-defined order

reclass node definition

nodes/blue.example.org.yaml:

classes:

- ssh-server

- backup-client

classes/ssh-server.yaml

parameters:

permit root login: no

classes/backup-client.yaml

parameters:

permit root login: without-password

classes:

- ssh-server

reclass node definition

nodes/blue.example.org.yaml:

classes:

- ssh-server

- backup-client

classes/ssh-server.yaml

parameters:

permit root login: no

classes/backup-client.yaml

parameters:

permit root login: without-password

classes:

- ssh-server

reclass node definition

nodes/blue.example.org.yaml:

classes:

- ssh-server

- backup-client

classes/ssh-server.yaml

parameters:

permit root login: no

classes/backup-client.yaml

parameters:

permit root login: without-password

classes:

- ssh-server

Parameter interpolation

nodes/diamond.example.org.yaml:

classes:

- motd

parameters:

- floyd reference: Shine on, you crazy diamond

classes/motd.yaml

parameters:

motd:

message: ${floyd reference}

Parameter interpolation

nodes/diamond.example.org.yaml:

classes:

- motd

parameters:

- floyd reference: Shine on, you crazy diamond

classes/motd.yaml

parameters:

motd:

message: ${floyd reference}

reclass future work

Package it.

Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

reclass future work

Package it. Doh!

preseed.cfg/d-i adapter?

Policy classification (regexp → class mappings)

Membership lists

Other data sources?

Better unit testing (without philosophical debates)

Your idea here!

