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Two approaches

Cloud provisioning
System administration
(classical)



Configuring the cloud

Unprecedented ease!
Scalability

”
Orchestration“

Ad-hoc provisioning
Homogeneous
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Targeting nodes
vs.

classifying hosts
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external
(node)

classifier
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Configuration management
&

remote execution
!



Single data source
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Enough of this boring stuff!
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At all cost, avoid special-casing in module code
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Define your data in one place only (no redundancy)
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But wait!
You promised recursion!
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Smart (deep) merging on return from recursive
descent walk
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More specific classes
override data defined in

less specific classes
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Multiple inheritance
well-defined order
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