FAI – The Universal Deployment Tool

Thomas Lange, University of Cologne

lange@informatik.uni-koeln.de

DebConf 15, Heidelberg, August 2015
finger lange@localhost

- whoami
 - Diploma in computer science, University of Bonn, Germany
 - Sysadmin since over two decades
 - SunOS 4.1.1 on SPARC hardware
 - Solaris Jumpstart
 - Started FAI in 1999
 - 1999 first cluster (16× Dual PII 400 MHz)
 - Debian developer since 2000
 - Several talks and tutorials:
 - Linux Kongress, Linuxtag, DebConf, SANE, LCA, FOSDEM, CeBit, OSDC, UKUUG, FrOSCon, Chemnitzer Linuxtag
What is a deployment?

- FAI = Fully Automatic Installation
- Making a computer ready to work
- From power-off to applications running
- It’s all about software packages
- Initial installation and maintenance upgrade
- Configuration and customization
- Central administration and control
What is FAI?

- FAI does everything a sysadmin (you!) has to do, before users can log in to a brand new computer for the first time
- Server based tool for a script based automatic installation
- Installs and configures the OS and all applications
- No master or golden image needed
- Class system provides modularity
- Flexible and easy to expand with hooks
- FAI documents the installation and configuration for you
- It can’t plan your installation :-((but
 - **Plan your installation and FAI installs your plan! :-)**
The configuration is stored on the install server

The installation runs on the client
Parts of an installation I

- Plan your installation!
- PXE boot (DHCP, TFTP)
- Install client runs as diskless client (aufs for rw access)
- Define classes and variables
Parts of an installation II

- Create partitions on local hard disk
- Create file systems
- Install software packages (OS and applications)
- Configure and customize packages (using scripts)
- Boot new system
The class concept of FAI

- You can group a list of hosts by using a class
- These hosts share the same configuration data defined in this class (e.g. a partitioning scheme, a list of packages, a customization script)
- A host usually belongs to multiple classes
- Example: GRUB DESKTOP XORG GNOME demohost LAST
- Order of the classes defines the priority from low to high
- All parts of the installation are using the classes
The config space

|-- class/
| |-- 10-base-classes
| |-- 50-host-classes
| |-- FAIBASE.var
| `-- GERMAN.var

|-- disk_config/
| |-- FAIBASE
| |-- DESKTOP
| `-- demohost

|-- basefiles/

|-- package_config/
| |-- FAIBASE
| |-- DESKTOP
| |-- GERMAN
| |-- GNOME
| `-- server07
Defining classes

Example: ...

defining classes:

```bash
#!/bin/sh

dpkg --print-architecture | tr a-z A-Z      # AMD64, I386

case $HOSTNAME in
    demohost)
        echo "FAIBASE DHCPC DEMO" ;;
    gnomehost)
        echo "FAIBASE DHCPC DEMO XORG GNOME";

esac

case $IPADDR in
    123.45.6.*) echo "CS_KOELN DESKTOP NET_6" ;;

esac

ifclass -o AMD64 I386 && echo "GRUB"
lspci | grep -q MATROX || echo "MATROX"
```
Variables

Example: .../class/FAIBASE.var:

```plaintext
FAI_ALLOW_UNSIGNED=1
KEYMAP=de-latin1-nodeadkeys
UTC=yes
TIMEZONE=Europe/Berlin
ROOTPW='\$1\$kBn.MWc0.B$djxB38B7dMkplhJHPf2d1'
LOGUSER=fai
YPDOMAIN=dept-a
```

- Define your own variables
- Use the variables in .../scripts/*
Disk partitioning

Example: ...

```bash

disk_config disk1 preserve_always:8 fstabkey:uuid

<table>
<thead>
<tr>
<th>Type</th>
<th>Mount Point</th>
<th>Size</th>
<th>File System</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>/</td>
<td>4G-10G</td>
<td>ext4</td>
<td>rw,noatime,errors=remount-ro</td>
</tr>
<tr>
<td>logical</td>
<td>swap</td>
<td>1G</td>
<td>swap</td>
<td>rw</td>
</tr>
<tr>
<td>logical</td>
<td>/var</td>
<td>1G-2G</td>
<td>ext4</td>
<td>rw createopts=&quot;-L var -m 5&quot;</td>
</tr>
<tr>
<td>logical</td>
<td>/tmp</td>
<td>1G-2%</td>
<td>ext4</td>
<td>rw tuneopts=&quot;-c 0 -i 0&quot;</td>
</tr>
<tr>
<td>logical</td>
<td>/home</td>
<td>5G-</td>
<td>ext4</td>
<td>defaults</td>
</tr>
</tbody>
</table>
```

- File systems: ext[2,3,4], vfat, xfs, ReiserFS, NTFS, **brtfs**
disk_config disk1
primary - 50-100 - -
primary swap 1G swap sw
primary - 2G-10G - -
logical - 0- - -
logical - 0- - -

disk_config disk2 sameas:disk1

disk_config raid
raid1 /boot disk1.1,disk2.1 ext4 rw
raid1 / disk1.3,disk2.3 ext4 rw,acl,user_xattr
raid1 - disk1.5,disk2.5 - -
raid1 - disk1.6,disk2.6 - -

disk_config lvm
vg volg1 md2,md3
volg1-usr /usr 8G ext4 rw createopts="-O dir_index"
volg1-var /var 2G ext4 rw createopts="-O dir_index"
volg1-hl /home/local 10G ext4 rw,acl,user_xattr,noexec,nosuid
volg1-es /export/sites 3G ext4 rw createopts="-O none"
volg1-v /vservers 8G ext4 rw createopts="-O ^dir_index"
Software package installation

Example:

```
# packages for Beowulf clients

PACKAGES aptitude
    fping ganglia-monitor

lam-runtime lam4 lam4-dev libpvm3 pvm-dev mpich
    scalapack-mpich-dev

PACKAGES install BEOWULF_MASTER
    gmetad apache
```

- Supported package tools: aptitude, apt-get, smart, rpm, urpmt, y2pmsh, yast, yum, zypper
Scripts and files

```
|-- scripts/
 |  |-- FAIBASE/
 |  |   |-- 10-misc Bourne shell script
 |  |   |-- 30-interface Bourne shell script
 |  |   `-- 40-misc Cfengine script
 |  `-- DEMO/
 |     |-- 10-misc Perl script
 |     `-- 30-demo Cfengine script

|-- files/
 |  |-- etc/
 |     |-- X11/
 |     |   |-- xorg.xonf/ fcopy /etc/X11/xorg.conf
 |     |     `-- FAIBASE
 |     |     |-- MATROX
 |     |     |-- CAD
 |     |     `-- demohost
```
#!/bin/bash
create NIS/NONIS config

fcopy -M /etc/nsswitch.conf /etc/host.conf
ifclass NONIS && rm -f $target/etc/defaultdomain
if ifclass NIS; then
 echo $YPDOMAIN > $target/etc/defaultdomain
 rm -f $target/etc/yp.conf
 for s in $YPSRVR; do
 ainsl -av /etc/yp.conf "ypserver $s"
 # don't do this! # echo "ypserver $s" >> $target/etc/yp.conf
 done
fi

ainsl -v /etc/fstab "${hserver}:/home /home nfs ro 0 0"
ainsl -av /etc/default/ssh 'SSHD_OPTS=-4'

fcopy -Mv /etc/hosts.allow /etc/hosts.deny
fcopy -M /etc/X11/xorg.conf
Installation times

<table>
<thead>
<tr>
<th>Host, RAM</th>
<th>Software</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-2690v2, 3.0 GHz, 128GB</td>
<td>5.4 GB</td>
<td>7 min</td>
</tr>
<tr>
<td>Core i7, 3.2 GHz, 6GB</td>
<td>4.3 GB</td>
<td>7 min</td>
</tr>
<tr>
<td>Core i7, 3.2 GHz, 6GB</td>
<td>471 MB</td>
<td>77 s</td>
</tr>
<tr>
<td>Core2duo, 2 GHz, 2GB</td>
<td>4.3 GB</td>
<td>17 min</td>
</tr>
<tr>
<td>Core2duo, 2 GHz, 2GB</td>
<td>471 MB</td>
<td>165 s</td>
</tr>
<tr>
<td>Pentium 4, 3 GHz, 1GB</td>
<td>2200 MB</td>
<td>10 min</td>
</tr>
<tr>
<td>Pentium 4, 3 GHz, 1GB</td>
<td>1100 MB</td>
<td>6 min</td>
</tr>
<tr>
<td>Pentium 4, 3 GHz, 1GB</td>
<td>300 MB</td>
<td>105 s</td>
</tr>
</tbody>
</table>

- New Cluster: 36 node, each Gbit, server with 10Gbit
- No change of the installation time (426 sec)
- Max. CPU usage on the server: system < 13%, user < 1.5%
- 10 Gbit network was saturated for 1 minute (98%)
- NFS is **NOT** a bottleneck
The universal tool

debian ubuntu

CentOS

Scientific Linux
Installing different distributions

- Booting FAI and disk partitioning does not need modification
- You can use a Debian nfsroot when installing CentOS
- Use a different base file for each distribution (rinse)
- Different access to package repository (sources.list, yum.repos.d)
- Adjust package names
- Adjust customization scripts

|-- basefiles/
 | -- CENTOS6_32.tar.xz
 | -- CENTOS6_64.tar.xz
 | -- CENTOS7_64.tar.xz
 | -- SLC6_64.tar.xz
 `-- UBUNTU_1410.tar.xz
The universal tool

- FAI does not distinguish between
 - bare metal
 - virtual host
 - chroot
 - Live CD
 - Golden image
 - disk image, cloud image

- It’s always about installing and configuring software packages
- chroot: `fai dirinstall`
- chroot does not have a hard disk
- chroot does not need a kernel
- TODO: `fai-cloudimage`
- FAI runs on i386, amd64, IA64, SPARC, PowerPC, ALPHA, z10 mainframe
- GOsa, FusionDirectory, openQRM, Qlustar, DebianLAN
FAI users

- Anonymous, financial industry, 32.000 hosts
- LVM insurance, 10.000 hosts
- City of Munich, 16.000 hosts
- Albert Einstein Institute, 1725 hosts
- Zivit, 260 hosts on two IBM z10 EC mainframes
- Archive.org, 200+ hosts
- XING AG, 300-400 hosts
- Opera Software, ~300 hosts
- Stanford University, 450 hosts
- MIT Computer science research lab, 200 hosts
- The Welcome Trust Sanger Institute, 540 hosts
- Deutsches Elektronen-Synchrotron, 273 hosts
- Mobile.de, ~600 hosts
- Electricité de France (EDF), 1500 hosts
- BUF, digital visual effects company, 1000 hosts
- ETH Zurich, systems group, ~300 hosts
- StayFriends, 700+ hosts
- Grml, creating eight different ISOs, daily builds
NEWS in FAI 4.4

- major rewrite and update of FAI guide \o/
- image installations (e.g. from a tarball)
- fai-cd now uses dracut instead of live-boot/initramfs-tools
- allows single device/partition btrfs configurations
fai-monitor-gui
FAI - Fully Automatic Installation

FAI is a non-interactive system to install, customize and manage Linux systems and software configurations on computers as well as virtual machines and chroot environments, from small networks to large-scale infrastructures like clusters and cloud environments.

It's a tool for unattended mass deployment of Linux. You can take one or more virgin PCs, turn on the power, and after a few minutes, the systems are installed, and completely configured to your exact needs, without any interaction necessary.

Motto: Plan your installation, and FAI installs your plan.

NEWS

- [28 Nov 2014] New FAI CD image available, FAI 4.3.1 - wheezy1
- [19 Nov 2014] FAI 4.3.1 released, bug fixes
- [24 Oct 2014] FAI 4.3 released, btrfs support added
- [3 Jun 2014] FAI 4.2 released, new ISO images created
- [15 September 2011] CentOS and Scientific Linux CentOS support
- [21 Dec 2009] The FAI project celebrates its [10th anniversary](http://fai-project.org)

Features

- Installs and updates Debian, Ubuntu, CentOS, PHEL, SUSE, ...
- Centralized deployment and configuration management
- Installs virtual machines using KVM, XEN or VirtualBox and Vserver
- Easy setup of software RAID and LVM
- Full remote control via ssh during installation
- Integrated disaster recovery system
- Every stage can be customized via hooks

Questions?