a distro for industrial R&D and engineering

DebConf 2017
August 8th, 2017

Mehdi DOGGUY
mehdi@debian.org
a distro for scientific computing

DebConf 2017
August 8th, 2017

Mehdi DOGGUY
mehdi@debian.org
a Debian derivative

DebConf 2017
August 8th, 2017

Mehdi DOGGUY
mehdi@debian.org
Since 2003, EDF has been using a custom distro on scientific workstations, HPC clusters and servers for industrial R&D and engineering.

EDF decided to make its distro publicly available and turn it into an Open Source community-driven project.

Outline of this presentation:

▶ business context
▶ scientific and engineering IT needs
▶ our solution
About EDF

- World nuclear energy leader
- Europe leader in hydro power
- Industrial operator in Asia and United States

Some key figures
- 71.2 billion euros annual revenue
- 37.6 M clients worldwide
- 584.7 TWh produced annually
- 136 GW production capacity
- 73 nuclear reactors, 78% of production
- 154 845 employees worldwide

- Large R&D and engineering divisions

https://www.edf.fr/en/the-edf-group/who-we-are/edf-at-a-glance
Scientific computing needs
Scientific computing needs at EDF

- R&D
 - Conception
 - Information technology
 - Renewable energies
 - Electrical networks
 - ...

- Engineering

- Energy management
 - Reduce downtime on existing reactors
 - Planning consumption and production weeks in advance
Scientific computing at a glance

- **Modeling**
 - Approximate reality with a model
 - Often need for a modeler

- **Simulation**
 - Execution of a numerical code computing the behavior of the model system
 - A whole area of software development
 - Need for the fastest hardware to work on large arrays of floats

- **Visualization**
 - Results exploration and analysis
 - Need for the best graphics hardware and displays
Typical IT user needs

- Scientific workstation / laptop
 - Modeling and visualizing
 - Developing scientific simulation codes
 - Accessing the HPC clusters

- High performance clusters
 - Thousands of compute nodes connected using fast network
 - More or less specialized depending on applications

- Computing chains
 - Servers or small clusters
 - Regular execution of the same code
 - Coupling with other components
2 Scibian
Our solution: Scibian

- User
- Developer
- Business needs
- Application
- Application
- Application
- Server
- Workstation
- HPC cluster
- HPC cluster
- Server
- Workstation

+customizations
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility
- Appropriate release cycle
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)
- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories
- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer
- Community openness
 - Easy to get interesting changes into the distribution
- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility
- **Appropriate release cycle**
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)
- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories
- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer
- Community openness
 - Easy to get interesting changes into the distribution
- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility
- Appropriate release cycle
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)
- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories
- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer
- Community openness
 - Easy to get interesting changes into the distribution
- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility

- Appropriate release cycle
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)

- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories

- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer

- Community openness
 - Easy to get interesting changes into the distribution

- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility
- Appropriate release cycle
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)
- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories
- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer
- **Community openness**
 - Easy to get interesting changes into the distribution
- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why Debian?

- One OS for workstations, servers and clusters
 - Full binary compatibility
- Appropriate release cycle
 - One major version approx. every 3 years
 - Frequent updates (for critical bugs and security fixes)
- Largest scientific software offering
 - Only Ubuntu matches, by following Debian repositories
- Designed for customization
 - Custom repositories, easy deployment
 - Modular and hookable installer
- Community openness
 - Easy to get interesting changes into the distribution
- Easy to integrate applications
 - Cool packaging helpers
 - Abundant documentation
Why a derivative?

- 6+ year support
- Custom security support
- Workstation and HPC hardware support backports (mainly for Infiniband, OmniPath, nVidia GPUs and newer Intel micro-architectures)
- Support of some libs removed from Debian
- Upgrade to newer major versions of some software
Life cycle

- Scibian 6 (2012-2014)
- Scibian 7 (2014-2016)
- Scibian 8 (2016-2018)
- Scibian 9 (2018-2020)

- Hardware
- Business app
Business Applications

Packaging of business applications follows a few rules:

- No maintainer scripts and no services
- No files outside /opt/$name-$version, except:
 - a script in /usr/bin
 - manpages
 - copyright file
 - icons and a desktop file
- Pre-Depends must be empty
- No alternative dependencies and no Provides
- All files are owned by root and writable only by root
- No setuid/setgid binaries (or other means to escalate privileges)
- ...

Each application is made available on each published version of Scibian.
3 Scibian for HPC Clusters
Deploying an HPC cluster

HPC clusters can be tricky to deploy because:

- Every manufacturer has its own solution
- No binary compatibility between clusters
- Conflicting software stacks between clusters (e.g. Infiniband vs OmniPath)
- Large number of compute nodes (a few thousands) to deploy
- Not easy to get Debian support
- Full (physical and software) installation cannot last more than 3 months
- High performance is the ultimate goal
Standardize Scibian cluster deployments by:

- Defining a general architecture for an HPC Cluster
- Describing how to install it using tools packaged in Scibian
- Showing how to configure it using our Puppet modules

Document available at:

https://edf-hpc.github.io/scibian-hpc-install-guide/
Puppet HPC

The main goal of Puppet-HPC is to provide a common generic configuration management system that can be used effortlessly across multiple HPC clusters and organizations.

The Puppet-HPC software stack notably provides:

- Many generic Puppet modules (>80) for all technical components required on a HPC cluster
- Defined data model for representing the description of an HPC cluster based on Hiera
- Tools to easily deploy and manage the configuration with high-scalability requirements

It is heavily tested on Debian and used in production on thousands of Debian machines.
Goals behind Puppet HPC

- The code base can be re-used and the development effort is shared.
- The same code is run on many different environments, it is therefore more tested and more reliable.
- The code can be easily tested on a small testing environment even if the data is different from the production environment.

More details available at:
- https://edf-hpc.github.io/puppet-hpc/puppet_hpc_reference-0.1.html
- https://github.com/edf-hpc/puppet-hpc
4 Why should I use Scibian?
Why should I use Scibian?

- Still use Debian (We don’t even change the kernel!)
- More relaxed update rules
- A set of integrated tools for deployment and scientific computing infrastructures
- Meet and work with other industrial users
- Well tested solution in a high demanding production environment
- Integrate specific proprietary software (that is not possible to integrate in Debian)
- ...
What’s next?
What’s next?

- Publish our packages (tools, open source business applications, puppet hpc...)
- Update our website and add up-to-date installation guides
- Convince Infiniband and OmniPath manufacturers to publish APT-gettable repositories, or let us do it
- Switch to collaborative development of Scibian
- Share, build and maintain specific tools
- Create a community around the use of Linux for business R&D
- ...

Scibian
Thanks!

Useful links:
- https://twitter.com/ScibianLinux
- https://github.com/scibian/
- https://github.com/edf-hpc
- irc://irc.debian.org/#debian-hpc
- https://lists.debian.org/debian-hpc/

Contact us: contact@scibian.org
We’re hiring!

Useful links:

- https://twitter.com/ScibianLinux
- https://github.com/scibian/
- https://github.com/edf-hpc
- irc://irc.debian.org/#debian-hpc
- https://lists.debian.org/debian-hpc/

Contact us: contact@scibian.org